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Abstract

The number of identified integer overflow vulnerabilities
has been increasing rapidly in recent years. In this paper,
we present a system, IntScope, which can automatically de-
tect integer overflow vulnerabilities in x86 binaries before
an attacker does, with the goal of finally eliminating the vul-
nerabilities. IntScope first translates the disassembled code
into our own intermediate representation (IR), and then per-
forms a path sensitive data flow analysis on the IR by lever-
aging symbolic execution and taint analysis to identify the
vulnerable point of integer overflow. Compared with other
approaches, IntScope does not run the binary directly, and
is scalable to large software as it can just symbolically ex-
ecute the interesting program paths. Experimental results
show IntScope is quite encouraging: it has detected more
than 20 zero-day integer overflows (e.g., CVE-2008-4201,
FrSIRT/ADV-2008-2919) in widely-used software such as
QEMU, Xen and Xine.

1. Introduction

Primitive types, including integers, typically have a fixed
size (e.g., 32 bits) for a particular machine architecture.
Thus, variables of these types have a maximum value (e.g.,
232). Operations that result in a value greater than this max-
imum can cause the value to wrap-around: this well-known
condition is called overflow. Integer overflows are particu-
larly insidious: while the overflow itself is usually not ex-
ploitable, it often leads to other classes of vulnerabilities, in-
cluding stack and heap overflows.

Recently, the number of identified integer overflow vul-
nerabilities has been increasing rapidly, as shown in Table 1.
From 2000 to 2007, almost every year, 1.5 times more integer
overflows are recorded by National Vulnerability Database
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(NVD [16]). Moreover, nearly 60% (219/364) of these vul-
nerabilities have the highest severity (with score 7−10) [16].
According to the 2006 CVE report [5], integer overflows rose
to the second most common vulnerability in the advisories
from operating system vendors. Furthermore, in the last 3
years, we have witnessed a number of integer overflow at-
tacks, such as 0-day exploits against Adobe PDF [27], Flash
[13], and the Microsoft WebViewFolderIcon ActiveX control
[26].

Year 2000 2001 2002 2003 2004 2005 2006 2007
Num 1 2 5 29 40 66 96 125

Table 1. The reported number of integer over-
flows in NVD from 2000 to 2007.

It is important to identify integer overflows before an at-
tacker does. Given program source code, there are several
techniques and tools (e.g., RICH [32], EXE [36], KLEE
[35]) that can perform static analysis or model checking to
detect integer overflows. However, as source code is not al-
ways available to end users, the state-of-the-art techniques
have to rely on dynamically running the software, exploring
program paths (e.g., SAGE [44]), and generating test cases,
to show the existence of a vulnerability. Such fuzzing tech-
niques have been commonly used by underground attackers.
However, to the best of our knowledge, none of the binary-
based fuzz techniques (including SAGE [44]) focus specifi-
cally on integer overflows; and even if the fuzzing tool could
explore all program paths, the vulnerability is still invisible
if the fuzzing tool does not generate a desired input.

In this paper, we present a systematic static binary anal-
ysis based approach to particularly focus on detecting inte-
ger overflow vulnerabilities when given only a binary, with
the goal of finally eliminating the vulnerabilities. Based on
the observation that most known integer overflow vulnerabil-
ities are caused by incomplete or improper input validation,
we apply symbolic execution and data flow analysis (i.e.,
taint analysis) techniques to automatically detect the program



paths which lack proper input validation. Our approach is
static in the sense that it does not run the software directly
in a real environment, and instead it relies on a symbolic ex-
ecution engine we developed to scan the program paths and
identify integer overflows.

The key ideas of our approach are (1) symbolically exe-
cuting the x86 binary on an SSA-like [28] intermediate rep-
resentation; (2) using taint analysis, not only tracking the
propagation of taint property, but also modeling accurate
bounds of each tainted piece of data via symbolic execution;
and (3) using a lazy checking, i.e., instead of checking each
arithmetic operation, our approach only checks whether the
tainted symbolic value used in sensitive points (e.g., mem-
ory allocation functions malloc, alloca) could overflow
under path constraints. In short, our approach only reports
a potential integer overflow vulnerability if the tainted sym-
bolic value used in sensitive points could overflow.

We have implemented our system called IntScope. To en-
able our analysis, we first use IDA Pro [12], a Windows and
Linux hosted multi-processor disassembler and debugger, to
disassemble an executable, and then we translate the disas-
sembled file into our own intermediate code, PANDA (Pro-
gram ANalysis Dedicated to ASM), on which our analysis
is performed. IntScope handles both Windows and Linux
x86 binaries. We have evaluated it with a number of real-
world programs from Microsoft Windows and Linux plat-
form, and we have reached very encouraging experimen-
tal results: IntScope not only successfully detects all the
known integer overflow bugs, but also identifies more than 20
new integer overflow vulnerabilities (e.g., CVE-2008-4201,
FrSIRT/ADV-2008-2919) in widely used applications, such
as QEMU [18], Xen [20], Xine [25], Mplayer [15], and VLC
[23]. All of the new vulnerabilities (i.e., the 0-day ones)
have been confirmed by our dynamic testing tool [46] and/or
the developers. In addition, after we reported our results to
the developers, some projects have already released patches
(e.g., Xine [25], MPD [14], Hamsterdb [11], Faad2 [7]).

Our contributions include:

• We propose a systematic method of combining taint
analysis and path-sensitive symbolic execution to
specifically detect integer overflow vulnerabilities in ex-
ecutables.

• We devise an intermediate instruction representation,
based on IDA Pro’s disassembled code, and a symbolic
execution engine.

• We implement a prototype called IntScope and use it to
analyze real-world binaries. Experimental results show
that our approach is highly effective and is able to detect
0-day integer overflow vulnerabilities.

2 Problem Statement

In this section, we first describe the common features of
integer overflow vulnerabilities, and then discuss the chal-
lenges in binary level integer overflow detection and describe
the problem scope of this paper.

2.1 Features of Integer Overflow

We have conducted more than 200 integer overflow case
studies, and we found that integer overflow vulnerabilities
usually have the following features:
I. Untrusted source – For most arithmetic operations

where integer overflow occurs, there is an operand which is
arithmetically derived from some tainted data. Tainted data is
derived from untrusted input sources like network messages,
input files, or command line options. There are several typi-
cal source functions such as read, fread and recv which
could introduce tainted data.
II. Various types of sinks – Whether or not an integer

overflow is harmful depends on where and how the program
uses the overflowed value. It is very dangerous when an over-
flowed value is used in some sensitive points, since it may
lead to other vulnerabilities. These sensitive points are called
sinks. Particularly, from our case studies, we found the sinks
for integer overflows are usually these points:

• Memory allocation: The overflowed value is used in
memory allocation functions (e.g., malloc, alloca)
as a size argument, and it usually results in an insuffi-
cient memory allocation, which may eventually become
an attacker’s springboard to a buffer overflow.

• Memory access: The overflowed value is used as an ar-
ray index or a pointer offset, which may cause arbitrary
bytes memory overwritten or read (e.g., an information
leakage attack).

• Branch statement: The overflowed value is used in a
branch statement, and the branch statement is not de-
signed to catch the integer overflow. It could lead to
a bypass of security checks (e.g., one of the cases in
non-control-data attack [38]) or result in an undesirable
execution.

• Other program-dependent sensitive points: There
may be other program-dependent sensitive points which
could be affected by the overflowed values. For in-
stance, in the integer overflow vulnerability in NetBSD
(CVE-2002-1490), its overflowed value is used as a
structure reference counter, which causes a shared ob-
ject (still in use) to be freed prematurely.

III. Incomplete or improper sanitization checks – Not
all the tainted data can lead to integer overflows, because



tainted values could be safely used in a program after care-
ful checks. However, almost all the subtle integer overflow
vulnerabilities are actually caused by incomplete or improper
checks.

2.2 Challenges

As we aim to detect integer overflow vulnerabilities di-
rectly in x86 binaries without executing the program, there
are a number of challenges to overcome.

• Lack of type information: Type information is usually
not available in executables, and the only real informa-
tion enforced is the operand size (i.e., 8, 16, 32, and
64 bit) in x86 instructions. Consider the instruction se-
quence:

mov eax, 0xffffffff;//eax = 0xffffffff
add eax, 2; //eax = 0xffffffff+0x2

we cannot determine whether 0xffffffff+0x2 is
an integer overflow; if 0xffffffff is interpreted
as an int type value, 0xffffffff+0x2 is equiva-
lent to -1+2, which is a normal addition operation; if
0xffffffff is interpreted as an unsigned int,
0xffffffff+0x2 will certainly overflow. Since we
are dealing with integer overflows, we have to recover
all the possible use of integers in binary code, and make
our analysis specifically focus on the data flow of these
integers.

• Differentiating benign integer overflow: Even if we
could recover type information, we still need to deal
with benign integer overflow operations (i.e., harmless
integer overflows). Benign integer overflow operations
do exist in binary code. Programmers (even compilers)
may use integer overflows deliberately. For example, if
x is an int type variable, the statement if(x >= -2
&& x<= 0x7ffffffd) will be translated into such
a piece of assembly code by GCC-4.2.0 compiler:

mov eax, x; // eax = x
add eax, 2; // eax = eax+2
js target

In this case, a large x such as 0x7fffffff causes an
overflow in above add instruction, but it is harmless as
GCC actually uses this overflow to reduce a compari-
son instruction. We cannot treat benign integer over-
flow operations as vulnerabilities, and hence we have to
differentiate benign integer overflows.

• Path explosion: As integer overflows are mainly
caused by incomplete or improper sanitization checks,
we need to analyze program paths to determine the ex-
istence of sanitization checks, and then to further iden-
tify the incomplete or improper checks. Therefore, our
analysis is path sensitive. However, the number of paths

in real-world software is too large (even infinite) to ex-
plore all paths. Although there are several methods to
reduce the path explosion problem, such as the use of
function summaries [45], it is still a major challenge.

2.3 Problem Scope

Integer overflows are one type of integer related bugs.
There are other types of integer bugs, such as assignment
truncation, integer underflow, and signedness errors [32]. In
this paper, we focus on the first type of integer bugs, namely,
integer overflows, which amount to nearly 70% of all the in-
teger bugs in the study conducted by Brumley et al. [32]. We
leave other types as future work.

3 System Design

In this section, we first give an overview of IntScope and
then describe its detailed design.

3.1 System Overview

The intuition behind our approach is that most integer
overflow vulnerabilities are caused by the misuse of over-
flowed values in sinks (e.g., memory allocation functions).
Thus, we track the propagation of tainted data, collect path
constraints on tainted data, and check whether a path has suf-
ficient checks to prevent integer overflows when tainted val-
ues are used in sinks.

Instead of checking whether each arithmetic operation
could overflow, we only check the tainted value used in sinks.
We call it “lazy checking”. Lazy checking can help differen-
tiate real integer overflow bugs from benign ones, and also
reduce the number of checks. Another advantage of lazy
checking is that most sinks mentioned in Section 2 have al-
ready provided some hints on the type inference.

Unlike traditional static analysis, our approach only an-
alyzes certain parts of a program to alleviate the path ex-
plosion problem. Most integer overflow vulnerabilities have
a prominent feature, i.e., tainted data are introduced by a
source function (e.g., fread, recv) and flow into a sink
function (e.g., malloc, alloca). Hence, our approach
only analyzes those program paths which pass through a
source function and reach a sink function.

At a high level, IntScope takes an executable file as input
and outputs the suspicious paths, along which some over-
flowed variables are used in sinks. Figure 1 shows the ar-
chitecture of IntScope. Given a binary program P to be ana-
lyzed, IntScope works as follows:

• Pre-processing the program. IntScope first uses our
Decompiler, which translates P into an SSA-like inter-
mediate representation called PANDA [51]. The De-
compiler also builds control flow graphs (CFG) G of
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Figure 1. An Overview of IntScope.

functions in P and a call graph (CG) C of P. To allevi-
ate path explosion, our Component Extractor and Pro-
file Constructor are used to compute the “chop” graphs
G’ of P. G’ includes those program paths which pass
through a source function and reach a sink function.
The output of this procedure is the “chop” graphs G’.

• Detecting integer overflows. In this procedure,
IntScope traversals G’ using a depth-first search. It
maintains a symbolic memory environment, and sym-
bolically executes the x86 binary on our PANDA repre-
sentation. At the same time, IntScope tracks the prop-
agation of tainted data. At each branch point, IntScope
uses the Path Validator to check which branch is fea-
sible under current path constraints. If both branches
are feasible, IntScope will fork an additional execution
and simulate each branch. At each sink (e.g., malloc,
alloca) where a tainted value is used, the Integer
Overflow Checker will enforce a constraint check on
that value. Once the tainted value could overflow,
IntScope outputs the path as a suspicious one.

3.2 Detailed Design

In this section, we describe the detailed design of
IntScope. We first present the design of our PANDA inter-
mediate representation in Section 3.2.1 and discuss how to
compute the chop graphs of a program in Section 3.2.2. In
Section 3.2.3 and Section 3.2.4, we introduce the design of
the symbolic memory environment and execution strategies.
Finally, we describe our lazy checking in Section 3.2.5.

3.2.1 The Design of PANDA

It is a significant challenge to directly analyze x86 instruc-
tions as the x86 instruction set is very complex. It has
hundreds of instructions (many with side-effects), and there
is no notion of variables in executables. Further, tainted data
can be propagated between registers and memory locations.
For example, after executing the following instructions:

mov [esp+4], eax // [esp+4] = eax

push 0

mov ebx, [esp+8] // ebx = [esp+8]

ebx is actually assigned eax; if eax is tainted, so is ebx.
However, we cannot retrieve such information unless we can
infer the two symbolic address esp+4 and esp+8 are actu-
ally referring to the same memory location.

Inspired by recent work such as Vine [22], Boomerang
[40], and DIVINE [31], we devise an SSA-like IR, named
PANDA, whose grammar is shown in Figure 2. We convert
x86 assembly into our PANDA representation based on our
previous work [51, 52].

statement var e val var var e e e
b

            if  :: :: [ ] | : | | ( )= = = Δτ tthen   else  
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Figure 2. PANDA grammar.

There are six basic statements in PANDA: (1) definition
statement: var :: τ[e] is used to define a variable, where var
is the name of a variable, τ is var’s bit length (e.g., qword,
dword, word, byte) and e is var’s memory address; (2) refer-
ence statement: val� var, similar to the Phi node in standard
SSA form [28], it generates a new variable val when var has
an unknown value or multiple possible values; (3) assign-
ment statement: var = e assigns variable var with value e;
(4) branch statement: if(eΔbe) then l1 else l2, where
Δb stands for comparison operators; (5) call statement, var
=function(e1,...) and (6) return statement, which means func-
tion exit.

In PANDA, we differentiate signed comparisons from
unsigned comparisons. For example, JG is a condi-
tion jump instruction for signed comparisons, whereas
JA is for unsigned comparisons; instructions cmp eax,
1; JG label are translated into if(eax >s 1) then
label in PANDA, whereas instructions cmp eax, 1;
JA label are translated into if(eax >u 1) then



label, where >s and >u stand for signed greater and un-
signed greater, respectively.

We model the semantics of the original x86 instructions,
and translate x86 assembly into our PANDA representation.
We build variable-like entities in binary code according to
memory access expressions. There are two kinds of variables
in PANDA: mem type and val type. A mem type variable,
corresponding to a register or a memory location, could be
assigned multiple times and only used as an l-value. A val
type variable can only be used as an r-value and stands for
the value in a memory location. A reference statement, a
special statement in PANDA, will generate a val type variable
when the program uses a mem type variable which has an
unknown value or multiple possible values. Although a mem
type variable could be assigned multiple times, each use of a
mem type variable will be replaced by a specific value which
is the latest assignment.

3.2.2 Component Extractor and Profile Constructor

To reduce path explosion, IntScope only analyzes certain
parts of the program that may be relevant to integer over-
flow vulnerabilities. Based on the observation that most in-
teger overflow vulnerabilities are caused by the misuse of
tainted data in sinks without proper checks, IntScope only
scans those program paths which pass through source func-
tions (e.g., read, recv, fread) and reach a sink function
(e.g., malloc, alloca, LocalAlloc).

The Component Extractor is responsible for selecting
those candidate functions that may invoke both source func-
tions and sink functions directly or indirectly. The call graph
C is a directed graph C = (N, E) that represents calling re-
lationships between functions in a program. Each node ni ε
N represents a function and each edge (ni, n j) ε E indicates
that function ni calls function n j. Since each function corre-
sponds to a node in C, the Component Extractor selects the
common ancestors of a taint source function node and a sink
function node in C as candidates. For example, the Compo-
nent Extractor would operate on the call graph in Figure 3
by selecting function read_and_malloc as a candidate
since it may invoke both source function fread and sink
function malloc indirectly.

read_and_malloc

fopen alloc_page read_file

malloc fread

Figure 3. A simple call graph.

Given the candidate functions, the Profile Constructor is

used to compute the “chop” graphs G’. A control flow graph
is a directed graph G = (N, E) where ni ε N represents a state-
ment i and (ni, n j) ε E represents a possible transfer of control
flow from statement ni to n j. For the control flow graph of
each candidate function, there is a unique entry point called
nentry and exit point called nexit. Let S r be the set of nodes
that invoke a source function, and let S k be the set of nodes
that invoke a sink function. The Profile Constructor com-
putes the nodes in G’ by (a) computing the set Esr, which
includes all nodes on the paths from nentry to a node in S r;
(b) computing the set Esk, which includes all nodes on the
paths from nentry to a node in S k; (c) computing the set S e,
which includes all nodes on the paths from a node in S r to
nexit; (d) if (S e

⋂
Esk) � φ, the set of nodes in G’ is: Esr

⋃
(S e
⋂
Esk). Figure 4 shows the intuition graphically.

There are three simple control flow graphs in Figure 4, and
read_and_malloc is the candidate function. The Profile
Constructor produces the chop graphs which only include the
shaded nodes.

CFG of read_and_malloc CFG of read_file

CFG of alloc_page

...

... call read_file

...

... call alloc_page

... ...

...

... call fread

...

... call malloc

...

Figure 4. A graphical depiction of the chop
graphs.

3.2.3 Modeling Memory

Because IntScope simulates program execution, it needs to
build a symbolic memory space to maintain a large number
of symbolic memory addresses and symbolic values. Ac-
cording to the design of PANDA, our virtual memory has
three mapping relationships (shown in Figure 5):
M: a mapping from symbolic addresses to variable names.
ST: a mapping from variable names to symbolic values

and other information, such as bit length (e.g., qword, dword,
word, byte), and type (e.g., a mem type variable or a val type
variable). For a mem type variable, its name also maps to its



Figure 5. Memory mapping relationships.

symbolic address.
VT: a mapping from symbolic values to value properties

(e.g., whether the value is tainted).
In our memory model, the taint property is bounded with a

value, i.e., whether or not a variable is tainted depends on its
current value. When multiple variables have the same tainted
value, all the variables are trusted once a variable among
them is completely checked. We take a source code exam-
ple to illustrate it:

L1 x=y=read_from_net(); //x and y are tainted
L2 if(x==c) //x is sanitized
L3 p = malloc(y); //y is sanitized

Variable x and y share the same tainted value because of
the assignment statement at L1. In our memory model, the
use of y at L3 is safe because x has been sanitized at L2.

3.2.4 Execution Strategies

Given the chop graphs G’, IntScope tries to explore each
feasible path from the entry point. IntScope maintains the
symbolic memory space and updates the symbolic memory
according to the semantics of PANDA statements. In partic-
ular,

• At each branch point, IntScope will fork an additional
execution. Along with the original “process”, the two
branch “processes” will check the feasibility of their
current path. If the path is feasible, they will constrain
themselves to their current path and continue to simu-
late the program execution.

• At each indirect jump statement such as goto eax,
IntScope will evaluate the current value of eax. If the
value is an address label, IntScope continues to simulate
the code from that address; otherwise, if the value in
eax is a symbolic value, IntScope cannot determine the
target address and will terminate.

• At each call statement, if the target function is an inter-
nal function of the program, IntScope performs an inter-
procedural analysis. IntScope simulates a function call
stack. Before entering a function, IntScope pushes the
return address on the stack, and then simulates the target
function; after exiting from the target function, IntScope
reloads the return address from the stack and continues
simulating.

With regards to the functions that are related to the prop-
agation of taint data, IntScope will directly apply function
summaries. For example, IntScope will mark the parameter
buffer in functions read, fread, recv and recvfrom
with a taint tag.
LOOPS. It is hard to model the number of loop execu-

tions in static analysis. In our approach, for a loop with a
symbolic variable as a bound, IntScope traverses all branches
in the loop only once; for a loop with a constant bound,
IntScope tries to simulate the loop as accurately as possi-
ble, rather than simulate a fixed number of times. When a
path re-enters the loop, IntScope checks whether the value of
the loop variable is closer to the loop bound. If so, IntScope
continues to simulate the path. For example, consider the
instruction sequence shown below which is actually an id-
iomatic expression generated by Visual Studio C compiler.

lea edi, [ebp+var_DC]
mov ecx, 37h
mov eax, 0h
rep stosd

The prefix rep causes the instruction stosd to be repeated
until ecx is decremented to 0. The idiomatic expression is
used to initialize a large block of memory. In this case, the
loop bound is a constant (37h), and IntScope will repeat the
loop 37h times.
Block Memory Operation. Block memory operations

(e.g., strncpy, memcpy, memmove) bring us a challenge
if the parameter size in these functions is a symbolic value.
For example, the function memcpy(dst, src, n)
copies n bytes from memory area src to memory area dst.
If n is a symbolic value, we are not sure how many bytes are
copied. Subsequent memory accesses taking dst as a base
address will be undecided. It is too expensive for static anal-
ysis to accurately simulate such functions. As such, IntScope
only cares about the taint property propagation, but ignores
the value propagation between dst and src. If src is a
tainted buffer, IntScope will treat dst as a tained buffer as
well, and all data from dst will be assigned a new tainted
value.

3.2.5 Lazy Checking

The lack of type information and benign overflow operations
in binary code significantly affect integer overflow detection.
For example, a 32-bit memory location can be used as ei-
ther an int type value or an unsigned int type value,
and hence 0xffffffff+1 could be interpreted as -1+1
or 4294967295+1. Moreover, since benign overflow op-
erations are prevalent in binaries, we cannot simply treat all
overflow operations as vulnerabilities.

Whether or not an integer overflow is harmful depends
on where and how the program uses the overflowed value.
As a result, we do not check whether each arithmetic op-
eration could overflow, but track how the program uses un-



trusted data; when a tainted value is used in sinks, we check
whether it overflows or not. In addition, as described in Sec-
tion 2, most sinks have already provided some hints on the
type inference.

• For most memory allocation functions, since the type of
parameter size is unsigned int, the value used as
parameter size should not be greater than 232 − 1 (for
32-bit architectures).

• A symbolic value used as an array index should not be
negative, i.e., if an expression of form x-y is used as an
array index, IntScope will check whether the formula
x-y>=0 is valid under current path constraints; if not,
IntScope generates an alarm.

• As an overflowed value used in a predicate may lead to
a bypass of security checks or result in an unexpected
execution, we should pay attention to the tainted value
in predicates. In particular, at each branch point, if there
is a tainted value used in the predicate, IntScope will
query whether or not the tainted value could overflow
under current path constraints.

We can get some type information from x86 conditional
jump instructions, e.g., JG, JNLE, JGE, JNL, JNGE, JLE,
JNG, JE and JNE are jump instructions for signed compar-
isons; JA, JNBE, JAE, JNB, JB, JNAE, JBE, JNA, JE and
JNE are jump instructions for unsigned comparisons. We
have preserved this information in PANDA. For example, >s
and >u stand for signed greater and unsigned greater, respec-
tively.

If tainted symbolic expressions of the form x+y or x*y
appeared in unsigned comparisons, IntScope will check
whether the expressions are greater than 232 − 1. Similarly,
symbolic expressions of the form x-y that appear in an un-
signed comparison should be greater than 0.

For tainted symbolic expressions of the form x+y that ap-
pear in signed comparisons, IntScope performs a check sim-
ilar to __addvsi3 (shown in Figure 6), a function in GCC
run-time library to catch signed addition overflow errors. If
a term (x or y) in x+y is positive/negative, we will check
whether the sum is greater/less than the other term (x or y).

96 __addvsi3 (SItype a, SItype b){
97
98 const SItype w = a + b;
100 if (b >= 0 ? w < a : w > a)
101 abort ();
102
103 return w;
104 }

Figure 6. Function addvsi3 in libgcc2.c of
gcc-4.2.0

Note that IntScope does not immediately generate an
alarm when it finds the tainted expression in a predicate

could overflow, and instead it considers whether the predi-
cate is designed to catch integer overflow errors. We have
summarized several common patterns that make use of the
erroneous result to catch integer overflow errors, such as
if((x+1)<x), if((x !=(x*y)/y). In addition, we
observe that if a program catches an integer overflow error, i t
is inclined to return soon or jump to a uniform error handling
function.

Even if the tainted value used in an if statement could
overflow, IntScope will not report it as a bug if the predi-
cates of the if statement match the common patterns and/or
one successor block of the if statement in the control flow
graph includes a return statement. Because compound
branch statements (i.e., multiple predicates in a statement
such as if(x>0&&(x+y)<y)) in source code will be com-
piled into multiple comparison instructions, we identify com-
pound branch structures in executables using our previous
work [51, 52].

4 Evaluation

We have implemented IntScope, which includes the fol-
lowing modules:

• Decompiler – We have implemented an in-house de-
compiler Bestar [51], which can be used for analyz-
ing executables. Bestar makes use of IDA Pro[12] as a
front-end, parses the disassemble result, identifies con-
trol flow structures and translates x86 assembly into
PANDA. IDA Pro provides a lot of useful informa-
tion: procedure boundaries and calls to library functions
(hence we can identify many library functions by func-
tion name). Bestar can also build the call graph and
control flow graphs of a program to present calling rela-
tionships between functions and abstracting the control
flow behavior of each function.

• Symbolic Execution Engine – We implement our
symbolic execution engine by leveraging GiNaC [8].
GiNaC is an open source framework for symbolic com-
putation within the C++ programming language. It is
very convenient for us to represent and manipulate arbi-
trary symbolic expressions with the help of GiNaC.

• Path Validator and Integer Overflow Checker – Both
the Path Validator and the Integer Overflow Checker are
built on top of STP [42], a decision procedure for bit-
vectors and arrays. STP implements all arithmetic op-
erations (even non-linear operations such as multiplica-
tion, division and modulo), and bitwise boolean opera-
tions. It is very convenient for IntScope to translate path
symbolic constraints into formulas accepted by STP.
More importantly, STP supports sign-sensitive rela-
tional operations (signed/unsigned comparisons), which



is very useful to model accurate symbolic variable
bounds.

In this section, we present our evaluation results. We first
evaluate the effectiveness in Section 4.1, and then measure
the efficiency in Section 4.2.

4.1 Effectiveness

We have applied IntScope to two Microsoft programs and
a number of widely used utility applications. IntScope suc-
cessfully detected all the known integer overflow vulnera-
bilities, and also found more than 20 zero-day integer over-
flows in software such as QEMU [18], Xen [20], Xine [25],
MPlayer [15] and VLC [23].

As IntScope is a static analysis tool, it may have false pos-
itives (the reasons are discussed in Section 5). To confirm the
suspicious vulnerability is real, we rely on our previous dy-
namic vulnerability test case generation tool [46], which can
mutate a benign input to drive program execution towards a
particular point. If our tool happens to generate such a test
case, we report that it is a real integer overflow vulnerability,
otherwise we leave it as suspicious (it may be false positive,
and we are just not sure).

4.1.1 Known-vulnerabilities

DSA SetItem Integer Overflow Vulnerability [34]. Func-
tion DSA_SetItem in comctl32.dll is used to set the
contents of an item in a dynamic structure array (DSA).
To facilitate the bug explanation, we present a snippet
of pseudo code from function DSA_SetItem in Fig-
ure 7. DSA_SetItem takes three parameters: hdsa
is a pointer to a dynamic structure array, index is
an index for the item in hdsa to be set, and pItem
is a pointer to a new item data which will replace
the item specified by index. If index is greater
than the maximum item count (hdsa->nMaxCount) in
hdsa, DSA_SetItem calls ReAlloc to allocate a new
buffer. Although index is checked multiple times, a
large index (such as 0x7ffffffe) can trigger a multi-
plication overflow in nNewItems∗hdsa->nItemSize,
where hdsa->nItemSize is the size of an item, resulting
in a smaller-than-expected returned pointer size.

To better understand how our system works, we present
part of the disassembled code of DSA_SetItem in Figure
8(a), corresponding to the snippet of pseudo code in Figure 7.
The assembly code in Figure 8(a) is converted into PANDA,
shown in Figure 8(b).

For function DSA_SetItem, IntScope considers the sec-
ond parameter (arg2) as tainted because it comes from user
input, and all unknown variables will be assigned symbolic
values.
Result. At each if statement, IntScope will fork an ad-

ditional execution along the feasible branch. Let’s focus on

int DSA_SetItem(HDSA hdsa, int index, void *pItem) {
HLOCAL hMem;
int nNewItems;

L1 if (index < 0) return 0;
L2 if (index >=hdsa->nItemCount) {
L3 if(index + 1>hdsa->nMaxCount)

{ nNewItems=((index + hdsa->cItemGrow)/
hdsa->cItemGrow)* hdsa->cItemGrow;

hMem = ReAlloc(hdsa->hMemArrayData,
nNewItems * hdsa->nItemSize);

//ignore some statements here
}

L4 hdsa->nItemCount = index + 1;
}

L5 memmove((void*)((index*hdsa->nItemSize)+
(DWORD)hdsa->hMemArrayData),pItem, hdsa->nItemSize);

Figure 7. Pseudo code for DSA SetItem.

the “process” which reaches line 58 along the path (B1, B2,
B3, B4) in Figure 8(b). Line 58 calls function realloc to
allocate (arg2 0+var 2 0)∗var 3 0 bytes of memory.
Because arg2_0 is the tainted symbolic value of arg2, the
whole expression is considered tainted. The Integer Over-
flow Checker will check whether the whole expression could
overflow under current path constraints: arg2 0>=0 &&
arg2 0>=var arg1 0 && (1+arg2 0)>var 1 0. In
this case, a large arg2_0 (e.g., 0x7fffffffe) can pass
program constraints and trigger an integer overflow. As a
result, IntScope outputs this path as a detected one.

Besides the path we described above, IntScope reports
the other two paths, corresponding to the paths (L1, L2,
L5) and (L1, L2, L4, L5) in Figure 7, which terminate at
function memove because of the potential multiplication
overflow in index * hdsa->nItemSize. We do not
have any prior knowledge about the DSA structure, and we
assume all fields in hdsa have all possible values (e.g.,
hdsa can contain items of any size). If either index or
hdsa->nItemSize is large enough, their product will
overflow. However, we are missing some preconditions be-
tween the number of items (nItemCount) and the size of
an item (nItemSize) in a normal DSA structure. Actually,
neither hdsa->nItemCount * hdsa->nItemSize
nor hdsa->nMaxCount * hdsa->nItemSize
could overflow. Therefore, the product of index and
hdsa->nItemSize cannot overflow under the constraint
index<hdsa->nItemCount.
GDI AttemptWrite Integer Overflow Vulnerability

(CVE-2007-3034). The integer overflow vulnerability in
function AttemptWrite of gdi32.dll is a classic
case. AttemptWrite tries to copy some data to a buffer
(named Buffer), whose capacity is Buffer_Capacity.
AttemptWrite performs memory management similar to
the code below:

if(NumberOfBytesWritten + NumberOfBytesToWrite
< Buffer_Capacity)

memcpy(Buffer, file_data, NumberOfBytesToWrite);

where NumberOfBytesWritten stands for the num-
ber of bytes that has been written to Buffer, and



mov    edi, edi
push   ebp
mov    ebp, esp
push   ebx
mov    ebx, [ebp+0Ch]
test     ebx, ebx
jge    loc_5D1ACA04

loc_5D1ACA04:
push   esi
mov   esi, [ebp+8]
cmp   ebx, [esi]
push   edi
jl        loc_5D1ACA41

xor     eax, eax
jmp     loc_5D1ACA5C

lea     eax, [ebx+1]
cmp   eax, [esi+8]
jle      loc_5D1ACA3C

loc_5D1ACA41:
......

mov    ecx, [esi+10h]
lea      eax, [ecx+ebx]
cdq
idiv     ecx
mov    edi, eax
mov    eax, [esi+0Ch]
imul    edi, ecx
imul    eax, edi
push   eax
push   dword ptr [esi+4]

call    _ReAlloc

loc_5D1ACA3C:
lea    eax, [ebx+1]

mov [esi], eax

(a) Part of the disassembled result of DSA SetItem.

B1:
4.   arg1 :: dword [ds:4+esp0]
5.    arg2 :: dword [ds:8+esp0]
......
20.   arg2_0 := arg2
21.   ebx = arg2_0
22.   if(arg2_0 >= 0 ) goto (26)

B2:
......
29. arg1_0 := arg1
30. var_1 :: dword [8+arg1_0]
31. var_2 :: dword [16+arg1_0]
32. var_3 :: dword [12+arg1_0]
34. var_arg1_0 :: dword [arg1_0]
35. esi = arg1_0
36. var_arg1_0_0 := var_arg1_0
39. if(arg2_0 < var_arg1_0) goto (65)

B5:
24.  eax = 0
goto (95)

B3:
40. eax = 1+arg2_0
41.  var_1_0 := var_1
42. if(1+arg2_0 <= var_1_0) goto (63)

B7:
loc_5D1ACA41:

......

B4:
43. var_2_0 := var_2
44. ecx = var_2_0
45. eax = arg2_0 + var_2_0
......
47. eax =(arg2_0 + var_2_0)/var2_0
48. edx = (arg2_0 + var_2_0)%var2_0
49. var_3_0 := var_3
51. edi = arg2_0+var_2_0
52. eax = (arg2_0+var_2_0)*var_3_0
......
58. ReAllo_62_ = 
_ReAlloc(var_4_0, (arg2_0+var_2_0)*var_3_0)

B6:
63. eax = 1+arg2_0
64. var_arg1_0 = 1+arg2_0

(b) Part of the PANDA IR for DSA SetItem.

Figure 8.

NumberOfBytesToWrite stands for the number of
bytes still to be written to Buffer. To avoid copy-
ing too much data, AttemptWrite enforces a bounds
check on NumberOfBytesToWrite. However, a large
NumberOfBytesToWrite will cause an addition over-
flow and bypass the upper bounds check, resulting in a heap
overflow in the subsequent call to memcpy.
AttemptWrite is invoked by many interface

functions, such as CopyMetaFile. The function
CopyMetaFile(hmfSrc, lpszFile) copies the
content of a Windows-format metafile (hmfSrc) to the
specified file (lpszFile). The integer overflow bug will
be triggered if hmfSrc is a handle to a crafted metafile.
Result. Taking CopyMetaFile as the entry function

and treating all data from hmfSrc as tainted data, IntScope
identifies hundreds of suspicious paths and then analyzes
each of them. These paths are on average more than 2, 000
statements (including more than 100 if statements) and ap-
proximately 20 function calls per path.

eEye Digital Security [24] has exposed the vulnerable
code, shown in the Figure 9(a). Integer overflow occurs
at the lea instruction. Figure 9(b) is the PANDA rep-
resentation for the assembly instructions in Figure 9(a).
When executing line 45 in Figure 9(b), IntScope de-
tects that var_2_0+arg2_0 is a tainted value and in-

vokes the Integer Overflow Checker to check whether
var_2_0+arg2_0 could overflow. After further checking,
IntScope determines that var_2_0+arg2_0 could over-
flow. Because using an overflowed value in a predicate is
considered dangerous, IntScope outputs that path.

Besides successfully detecting the known vulnerabil-
ity in function AttemptWrite, IntScope identified the
other two suspicious vulnerable points. We found most
paths terminate at a call statement LocalReAlloc
(var_1_0,20+4*arg2_0,2) in a function named
pmetalink16Resize, and 20+4*arg2_0 is reported
as an integer overflow. We trace the origin of arg2_0
and find that arg2_0 comes from a global array in
gdi32.dll. Missing global runtime information, IntScope
assumes that global variables have tainted values, hence
it deduces 20+4*arg2_0 could overflow and generates
the alarms. The others paths terminate at a call statement
LocalReAlloc(var 1,2*var 15 0, 2) in function
CloseMetaFile because of a similar reason: var_15_0
also originates from the same global array, and IntScope con-
siders 2*var_15_0 a suspicious overflow.



77F04271 mov eax, [ebx+0Ch] // NumberOfBytesWritten
77F04274 mov esi, [ebp+0Ch] // NumberOfBytesToWrite
77F0427D lea ecx, [eax+ esi]
77F04280 cmp ecx, [ebx+8] // Buffer_Capacity
77F04283 ja short loc_77F042B

42. eax = var_2_0
43. esi = arg2_0
44. ecx = var_2_0+arg2_0
45. if(var_2_0+arg2_0 >u var_3_0)

Figure 9. (a) Vulnerable code in Function AttemptWrite. (b) PANDA IR for (a).

4.1.2 Zero-day Vulnerabilities

QEMU and Xen – We have detected 7 zero-day integer
overflow vulnerabilities in QEMU. Six of them have been
confirmed by our dynamic testing tool [46]; the remaining
one is highly suspicious, but we cannot generate a test case
to show its real existence yet. French Security Incident Re-
sponse Team (FrSIRT) [19] has published a security advisory
for these vulnerabilities (FrSIRT/ADV-2008-2919).

QEMU supports various disk image formats, such as raw,
qcow, qcow2, vmdk, vpc and cloop. However, the block
drivers for some image formats are vulnerable as detected by
our system. Crafted disk images can trigger integer over-
flows and cause out-of-bound accesses when QEMU tries
to open these images. We show the vulnerability in func-
tion qcow_open (in qemu-0.9.1/block-qcow2.c) to illus-
trate this.

194 if (bdrv_pread(s->hd, 0, &header, sizeof(header))
!= sizeof(header))

195 goto fail;
......

241 s->l1_size = header.l1_size;
246 if (s->l1_size < s->l1_vm_state_index)
247 goto fail;
249 s->l1_table=qemu_malloc(s->l1_size*sizeof(uint64_t));
250 if (!s->l1_table)
251 goto fail;
252 if (bdrv_pread(s->hd, s->l1_table_offset,

s->l1_table,s->l1_size * sizeof(uint64_t)) !=
253 s->l1_size * sizeof(uint64_t))
254 goto fail;
255 for(i = 0;i < s->l1_size; i++) {
256 be64_to_cpus(&s->l1_table[i]);
257 }

Figure 10. Code snippet of function qcow open
(qemu-0.9.1/block-qcow2.c).

Function qcow open in block-qcow2.c is used
to open a qcow2 [17] format disk image. Figure 10
shows the source code snippet of qcow_open. Func-
tion bdrv_pread in line 194 reads tainted data from a
qcow2 format image file to a structure header. All con-
tents in header originate from the image file. After com-
plex taint propagation, s->l1 size is tainted. Function
qemu_malloc in line 134 directly calls function malloc
to allocate s->l1 size∗sizeof(uint64 t) bytes of
memory. Although s->l1 size is checked in line 249,
s->l1 size ∗ sizeof(uint64 t) could still over-
flow, resulting in an array access out-of-bound in line 256.
Block drivers for other disk image formats: raw, vmdk,
vpc, cloop and the format used by Bochs have similar

problems.
We detected the same integer overflow vulnerabilities in

Xen. After a closer analysis, we found that Xen actually
reuses QEMU’s code, and hence all the integer overflow vul-
nerabilities in QEMU exist in Xen as well.
Media Players – We also applied IntScope to several mul-

timedia players, including Xine [25], MPlayer [15], VLC
[23] and Mpd [14].
Xine – Xine, a free multimedia player, has been down-

loaded nearly four million times from sourceforge. We
detected three integer overflow vulnerabilities in Xine-lib
1.1.15 (the xine core engine), and an integer overflow
vulnerability in Xine-ui 0.99.5 (an xlib-based GUI fron-
tend). The two integer overflow vulnerabilities in func-
tion process_commands in Xine-lib allow remote at-
tackers to compromise a server if the server uses the
cdda_server routine (a component of xine) to play au-
dio CDs over the network. Another integer overflow in func-
tion ff_audio_decode_data in Xine-lib could bypass
a bounds check, resulting in a heap overflow. The three bugs
were promptly confirmed by the developers.

A crafted PNG format picture could trigger an inte-
ger overflow vulnerability in function _LoadPNG in Xine-
ui 0.99.5. _LoadPNG performs memory allocation simi-
lar to malloc(width* height*3), where width and
height are specified by the input PNG file. A crafted PNG
file with very large width and height will cause integer
overflow in width*height*3, resulting in a heap over-
flow when _LoadPNG tries to read data from the PNG file
to the allocated memory.
Mplayer and VLC – Mplayer and VLC are two widely

distributed media players. Both Mplayer and VLC can im-
port Win32 codecs on ELF i386 platforms by building a DLL
loader and emulating responses from necessary Win32 API
calls, such as registry operations. However, we detected a
malformed fake registry file could trigger an integer over-
flow in function open_registry in Mplayer and VLC,
eventually causing a heap overflow.

We also detected another integer overflow vulnerability
in avisubdump, an independent tool in the Mplayer pack-
age. Avisubdump dumps subtitle streams embedded in
AVI files to stdout. The integer overflow in function
dumpsub gab2 in avisubdump causes a bounds check
to be bypassed, resulting in an unexpected execution.
MPD – Music Player Daemon (MPD) allows remote ac-

cess for playing music and managing playlists. We de-
tected that a crafted MPEG-4 format file can cause an in-



teger overflow in function mp4_decode in MPD. Function
mp4_decode does not correctly check data from the crafted
input file, which causes a multiplication overflow, and the er-
roneous result is used in function malloc. The bug was
fixed by the developers after we reported it.
Others – Besides examining those applications discussed

above, we also checked Faad2 [7] (a portable MPEG-4
and MPEG-2 AAC decoder), hamsterdb [11] (a lightweight
embedded database engine), Goom [10] (a visual effects
generator for mp3 players), and Cximage [6] (an im-
age processing and conversion library). IntScope detected
two integer overflows in functions mp4ff read stts
and decodeMP4file in Faad2, which could cause a
heap overflow (CVE-2008-4201). The integer overflow in
function ConvertWmfFiletoEmf in Cximage results in
malloc(0); a malformed local configure file could cause
an integer overflow in function gsl_read_file in Goom,
which could further lead to a heap overflow. An integer
overflow vulnerability in function btree find cursor
in hamsterdb, which could cause potential buffer overflows,
has aleady been fixed by the developers in their latest version.

We summarize the experimental results in Table 2. The
column “Paths” shows the number of suspicious paths gener-
ated by IntScope. Since IntScope performs a path-sensitive
analysis, a vulnerable point in a program may cause many
suspicious paths. The column “Total” indicates the number
of vulnerable points. Note that Xen and QEMU have the
same vulnerabilities. Totally, we detected 26 integer over-
flow vulnerabilities, and 20 of them have been confirmed by
our dynamic testing tool [46] and/or by the developers. For
the remaining 6 suspicious integer overflows, we cannot gen-
erate test cases to show their real existence yet.

4.2 Efficiency

In this section, we measure the performance and space
overhead of our system. The evaluation is performed on an
AMD Opteron Server (2.6 GHz) with 8GB memory running
Linux Kernel 2.6.18. Table 3 shows the result of efficiency
evaluation. We measured the time that IntScope spent trans-
lating x86 assembly into our PANDA representation (the col-
umn “Binary-to-IR time”) and the time IntScope spent sym-
bolically executing PANDA (the last column). We can see
that translating the x86 binary into our PANDA IR is time-
consuming part (varying from 1 seconds to nearly 1131 sec-
onds). The “IR Size” shows the size of the target PANDA
representation generated by our Decompiler, and it looks
much bigger than the original binary mainly because for a
single instruction, we may introduce many PANDA state-
ments. For example, a simple push ebp will be translated
into the statement sequence shown in Figure 11.

To summarize, the average size for these binaries is
320.3K bytes, and we find that IntScope takes 288.2s to
translate them into the PANDA code, with a size of 5.46M

1. esp0 := esp
2. loc1 :: dword [-4+esp0]
3. esp = -4+esp0
4. ebp0 := ebp
5. loc1 = ebp0

Figure 11. PANDA IR for “push ebp"

bytes, and then takes 293.6 seconds to symbolically execute
the interesting paths.

5 Discussion

Theoretically, IntScope may generate a test case for each
identified vulnerable path by solving the path conditions with
concrete values. In practice, however, the suspicious paths
sometimes are not complete execution traces since IntScope
only scans certain parts of a program, that is, the suspicious
paths do not start from function main. This is why we use
our dynamic vulnerability test case generation tool [46] to
show the true existence for a particular vulnerability.

For those suspicious integer overflow vulnerabilities that
we cannot generate test cases to confirm, we have to man-
ually determine whether they are false positives or not. We
examined the reasons and we sum up why IntScope may gen-
erate false positives as follows:
Missing of the constraints between inputs. IntScope as-

sumes the input data could be “anything” and ignores the
innate constraints between inputs. For example, when ap-
plying IntScope to function DSA_SetItem (see Section
4.1.1), IntScope reports the paths (L1, L2, L5) and (L1,
L2, L4, L5) in Figure 7. The parameter hdsa in function
DSA_SetItem is a dynamic structure array. The product
of the number of items (hdsa->nItemCount) and the size
of an item (hdsa->nItemSize) in hdsa should not over-
flow (i.e., hdsa->nItemCount ∗ hdsa->nItemSize
< 232). Without this precondition, IntScope reports the two
paths as suspicious paths.
Lack of global information. For example, besides the

known integer overflow in gdi32.dll, IntScope reports
the other two vulnerable points (see Section 4.1.1). We find
the two vulnerable points are caused by the use of some
global data. Actually, the use of this global data is safe. We
need prior knowledge about the target program to identify
such false positives.
Imprecise symbolic execution. Our symbolic execu-

tion is not perfect. IntScope does not accurately simulate
block memory functions (memmove, memcpy, etc.) and
some string functions (strncmp, strchr, etc.). However,
IntScope is still able to find many integer overflow bugs in
real applications, showing that our system is tolerant of such
imprecise symbolic simulation.



Name Version Entry Function Paths# Total# Confirmed # Suspicious#
GDI32.dll 5.1.2600.2180 CopyMetaFile 452 3 1 2

comctl32.dll 5.82.2900.2180 DSA SetItem 3 2 1 1
bochs open 3 1 1 0
cloop open 1 1 1 0

parallels open 2 1 1 0
qcow open(for qcow2 format) 3 1 1 0

QEMU 0.9.1

vmdk open 20 2 1 1
Xen 3.2.1

vpc open 1 1 1 0
ff audio decode data 10 1 1 0

Xine 1.1.15 process commands 2 2 2 0
Xine-ui 0.99.5 LoadPNG 4 1 1 0

dumpsub gab2 1 1 1 0
MPlayer 1.0rc2 init registry 3 1 1 0

Mpd 0.13.2 mp4 decode 2 1 1 0
Goom 2k4 gsl read file 1 1 1 0

Cximage 600 full ConvertWmfFiletoEmf 1 1 1 0
decodeMP4file 36 3 2 1

faad2 2.6.1 mp4ff read stts 1 1 1 0
Hamstedb 1.0.4 btree find cursor 3 1 1 0

Table 2. Evaluation Result on Effectiveness

Name Executable File Size Binary-to-IR time (seconds) IR Size Traversing Time (seconds)
GDI32.dll GDI32.dll 271KB 614 7.61 MB 574

comctl32.dll comctl32.dll 597 KB 1131 13.7 MB 0.1
QEMU Qemu-img 341 KB 124 12.8 MB 358

cdda server 14.5 KB 4 116 KB 26Xine
xine 966 KB 590 12.9 MB 327

Mplayer avisubdump 14.2 KB 1 36.8 KB 0.3
MPD mpd 243 KB 131 2.74 MB 667

GOOM libgoom2.so 439KB 94 1.42 MB 445
faad2 faad 57.6 KB 29 693 KB 113

Hamstedb libhamsterdb.so 260 KB 164 3.46 MB 426
Average 320.3KB 288.2 5.46MB 293.6

Table 3. Evaluation Result on Efficiency

6 Related Work

Integer Misuse Detection and Protection. To prevent
integer based vulnerabilities, several techniques like com-
piler extensions and safe C++ integer classes have been pro-
posed. With -ftrapv option, the GCC compiler will insert
additional calls (e.g., _addvsi3) before signed addition op-
erations to catch overflow errors. Similarly, RICH [32] in-
serts run-time checks with low overhead according to for-
mal semantics for safe C integer operations. It is inevitable
for such runtime check techniques to generate false positives
because of benign integer overflows. Using other safe C++
class (such as SafeInt, IntSafe) or arbitrary precision arith-
metic packages (such as GMP [9], CLN [3]) could relax in-
teger security problems, however, the performance overhead
is still non-trivial.

Using taint analysis to detect integer misuse vulnera-
bilities in C programs has proven to be highly effective
[29, 37, 49]. For example, Ebrima N. Ceesay et al. [37]
implemented a static analysis tool on top of Cqual [41] to
track the untrusted data. The tool in [37] uses a dataflow-
insensitive analysis and generates an alarm when an un-
trusted integer variable is used to access memory.

Ashcraft and Engler [29] presented a range checker to
track whether an untrusted value is bounds checked before
the value is used in trusting sinks. Because range checker

only cares whether the untrusted value is bounds checked,
untrusted data after bounds checking are considered safe
data, which may miss subtle integer overflow bugs.

Sarkar et al. [49] proposed a constraint graph to describe
sanitization checks. The nodes in the constraint graph repre-
sent the integer expressions, and the edges represent ordering
relationships between the integer expressions. For an expres-
sion used in memory allocation, its sub-expressions are iter-
atively walked. If any sub-expression is unverified, it reports
an alarm [49].

UQBTng [53] is a tool to automatically find integer over-
flows in Win32 binaries. UQBTng first makes use of UQBT
[21] to translate binaries into C code; then UQBTng inserts
assert statements before the calls to memory allocation
functions; finally, UQBTng uses CBMC [39], a Bounded
Model Checker, to verify the program property. UQBTng
completely depends on the ability of the translator. However,
the automatic decompilation of binary files to equivalent C
code is still quite challenging. Unlike UQBTng, IntScope
simulates program execution according to the semantics of
low-level instructions.
Binary Analysis. Vine [22] is a static analysis compo-

nent in the BitBlaze [2] project. Vine can accurately trans-
late each x86 instruction into a RISC-like intermediate repre-
sentation(IR) and it implements a dataflow and control flow
analysis on that IR. We believe our techniques for detecting



integer overflow can be implemented on top of Vine as well.
CodeSurfer/x86 [48, 47, 31, 30] is a binary analysis plat-

form which makes use of both IDA Pro and the CodeSurfer
system [4], a toolkit for building program analysis and in-
spection tools. CodeSurfer/x86 uses the Value-Set Analysis
(VSA) algorithm [30] to recover variable-like entities in bi-
naries, and translates x86 binary code into an IR which can
be accepted by the CodeSurfer system.

Chevarista [1] is a project for automated vulnerability
analysis on SPARC binary code. Chevarista demonstrates
how to translate binary code into SSA form and model vari-
able bounds by interval analysis to detect buffer overflows
or integer overflows. Chevarista also mentions techniques to
check race conditions based on model checking theory.
Symbolic Execution. Symbolic execution is widely used

in many projects, such as EXE[36], CUTE[50], DART[43],
SAGE [44], BitScope [33], and Archer [54]. Archer, EXE,
CUTE and DART insert a symbolic execution engine into
program source code and use a mixed execution to gener-
ate test inputs or find potential bugs on feasible paths. Un-
like DART and CUTE, SAGE first runs the target program
and collects a real trace. Then it virtually re-executes the
recorded trace to collect input-related constraints and gener-
ates new inputs. BitScope implements a mixed execution to
analyze malicious binaries.

7 Conclusion

In this paper, we have presented the use of symbolic ex-
ecution to automatically detect integer overflow vulnerabili-
ties in x86 binaries with the goal of identifying the vulner-
abilities before an attacker does. Our approach simulates
program execution, tracks the propagation of taint data, and
checks whether a tainted symbolic expression used in a sink
can overflow under path constraints. We have implemented
our approach in a system called IntScope and applied it to an-
alyze a number of real-world binaries. Experimental results
show that our approach is highly effective and practical. We
found more than 20 zero-day integer overflow vulnerabilities
in several popular software packages, including QEMU, Xen
and Xine.
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